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Abstract
Lehmer’s famous question concerns the existence of monic integer coefficient polynomials with Mahler

measure smaller than a certain constant. Despite significant partial progress, the problem has not been
fully resolved since its formulation in 1933. A powerful result independently proven by Lawton and Boyd
in the 1980s establishes a connection between the classical Mahler measure of single variable polynomials
and the generalized Mahler measure of multivariate polynomials. This led to speculation that it may
be possible to answer Lehmer’s question in the affirmative with a multivariate polynomial although
the general consensus among researchers today is that no such polynomial exists. We show that each
possible candidate among a particular class of two variable polynomials can be bi-rationally mapped onto
a polynomial with Mahler measure greater than Lehmer’s constant. Such bi-rational maps are expected
to preserve the Mahler measure for large values of a certain parameter.
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1 The Mahler Measure and Lehmer’s Problem
In this chapter we give the historical motivation for Lehmer’s problem and outline some partial progress that
has been made.

1.1 The Mahler Measure and Kronecker’s Theorem
Let p(x) be a monic polynomial with integer coefficients.
We write p as

p(x) =
n∏
j=1

(x− αj).

Consider the quantity ∆p,k defined as

∆p,k =
n∏
j=1

(αkj − 1).

One can show that ∆p,k is an integer for all k and its prime factors are subject to certain congruence
conditions modulo k which results in it being easier to factor than an arbitrary integer. Exploiting these
congruence conditions, D.H. Lehmer searched for large primes in the integer sequences {∆p,k}k∈N. He found
that the growth rate of this sequence is depends on a certain function of p, which we define presently.

Definition 1.1. The exponential Mahler measure of a polynomial p(x) = a
∏n
j=1(x− αj) is the value

M(p) := |a|
n∏
j=1

max{1, |αj |}.

The logarithmic Mahler measure of p is
m(p) := logM(p).

Throughout the following, Mahler measure will be understood to mean exponential Mahler measure.
We list a few elementary properties of m.

Proposition 1.1. For any polynomials p(x) and q(x) in Z[x] we have the following:

(1) M(pq) = M(p)M(q)

(2) M(p) = 1 ⇐⇒ p is a product of a monomial and a cyclotomic polynomial.

(1) is immediate from the definition. (2) follows from a well-known theorem of Kronecker. To prove it, we
make use of the following lemma.

Lemma 1.2. The set of integer coefficient polynomials, of fixed degree n, with all zeroes inside or on the
unit circle is finite.

Proof. Let p(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 be such a polynomial and let x1, ..., xn be its zeroes. We
have

|aj | =

∣∣∣∣∣∣∣∣
∑

I⊂{1,...,n}
|I|=n−j

∏
k∈I

xk

∣∣∣∣∣∣∣∣ ≤
(
n

j

)

for each k, |xk| ≤ 1. Then we have at most 2
(
n
j

)
+ 1 choices for each coefficient and so set of polynomials

satisfying our requirements is finite.

Recall that an algebraic integer is a zero of a monic polynomial with integer coefficients. The minimal
polynomial of an algebraic integer α is the unique monic irreducible polynomial p of smallest degree such
that p(α) = 0. Two algebraic integers are conjugates of one another if their minimal polynomials coincide.



1 THE MAHLER MEASURE AND LEHMER’S PROBLEM 5

Theorem 1.3 (Kronecker). Suppose α is an algebraic integer such that all of its conjugates lie inside or on
the unit circle. Then α is a root of unity.

Proof. Let p(x) =
∏n
j=1(x− αj) be the minimal polynomial of α = α1. We claim the polynomial

pK(x) =
n∏
j=1

(x− αKj )

has integer coefficients for any integer K.
Indeed, all coefficients of pK are a symmetric polynomial evaluated at (x1, ..., xn) and so are fixed by the
Galois group Gal(Q(x1, ..., xn)/Q). Then they must be rational algebraic integers.
By the previous lemma, the set {pK : K ∈ N} is finite and so for some K,L ∈ N, we have pK = pL and so
we can assume W.L.O.G that

αK1 = αL2 .

Repeatedly applying this reasoning, and by appropriately labelling the zeroes of p, we see that for some
integer 1 ≤ a ≤ n we have αKj = αLj+1, for 1 ≤ j ≤ a, where subscripts are taken modulo a.
Then

αK
a

1 = αL
a

1

and so α1 is an (Ka − La)th root of unity.

1.2 Lehmer’s Problem
For Lehmer’s task, it would be helpful to use polynomials with small Mahler measure greater than 1, for the
corresponding sequences {∆p,k}k∈N would grow slowly. Lehmer found the polynomial

l(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

which has Mahler measure λ = 1.17628018.... λ is the smallest known constant, greater than 1, which is the
Mahler measure of a monic integer polynomial. The problem of determining a monic integer polynomial p
such that

1 < m(p) < λ

is known as Lehmer’s problem. Many believe no such polynomial exists and that λ is an optimal lower bound.

On inspection of Lehmer’s polynomial, we observe that its coefficients are palindromic.
Polynomials with such coefficients are said to be reciprocal. Reciprocity of a polynomial p(x) of degree n
can be characterised algebraically by the equation

p(x) = xnp(x−1).

As the following result of C.J. Smyth shows, reciprocity is a very important property in the context of
Lehmer’s question.

Theorem 1.4 (Smyth). Let p(x) be a monic polynomial with integer coefficients. If p is not reciprocal

M(p) ≥ θ0

where θ0 = M(x3 − x− 1) > λ.

A version of this result with a smaller lower bound was proved earlier by Breusch. [7]
We now define a generalised Mahler measure.

Definition 1.2. Let p(x1, ..., xn) be a Laurent polynomial with complex coefficients. The logarithmic Mahler
measure of p is the value

m(p) :=
∫ 1

0
...

∫ 1

0
log |p(e2πiθ1 , ..., e2πiθn)|dθ1...dθn

The exponential Mahler measure of p is
M(p) := expm(p).
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The following theorem, known as Jensen’s formula, shows that the two definitions coincide in the single
variable case.

Theorem 1.5 (Jensen). For any α ∈ C we have∫ 1

0
log |e2πit − α|dt = log+ |α|

where log+ |α| = max{0, log |α|}.

Proof. We write α in polar as α = re2πis, r > 0, s ∈ [0, 1].
The integral under consideration becomes∫ 1

0
log |e2πit − α|dt =

∫ 1

0
log |e2πit − re2πis|dt

=
∫ 1

0
log |e2πi(t−s) − r|dt+

∫ 1

0
log |e2πis|dt

=
∫ 1

0
log |e2πit − r|dt

For now suppose r 6= 1 We now write this last integral as a limit of approximating sums by partitioning the
unit circle into n sectors of equal area.
This gives ∫ 1

0
log |e2πit − r|dt = lim

n→∞

1
n

n∑
k=1

log |e2πik/n − r|

= lim
n→∞

1
n

log |
n∏
k=1

(e2πik/n − r)|

= lim
n→∞

log |1− rn|1/n

Since

lim
n→∞

|1− rn|1/n =
{

1, 0 < r < 1
r, r > 1

we obtain the result.
If r = 1 the integral is improper. Let γε be the circular arc of radius ε > 0 and centre 1 such that its
endpoints, z1, z2 lie on the unit circle and the rest of the curve lies inside. Let Γε be unit circle with the
shorter arc connecting z1 and z2 removed. We parametrize γε from z1 to z2 and Γε from z2 to z1.
Then ∫ 1

0
log |e2πit − r|dt = lim

ε→0

1
2πi

∫
Γε

log |z − 1|dz
z

= lim
ε→0

1
2πi

∫
γε

log |z − 1|dz
z

where the last equality follows from Cauchy’s theorem. The integral in the last expression has size at most
ε| log ε| which tends to 0 as ε tends to 0.

Jensen’s formula shows that the two definitions coincide when p is a polynomial in a single variable but it is
not immediately clear that general formula is well defined. That is, if p(x1, .., xn) vanishes on the torus Tn,
then this point is a singularity of log |p(e2πiθ1 , ..., e2πiθn)| and so it is not clear that the integral converges. It
turns out that not only is the integral defining the Mahler measure guaranteed to converge, it can be realised
as the limit of Mahler measures of polynomials in a single variable via the following technical result.

Theorem 1.6 (Lawton, Boyd). Let r = (r1, ..., rn) ∈ Zn and let q(r) := min{H(s) : s = (s1, ..., sn) ∈ Zn, s 6=
(0, ..., 0),

∑n
j=1 sjrj = 0} where H(s) := max{|sj | : 1 ≤ j ≤ n}. For a Laurent polynomial p(x1, ..., xn) let

pr(x) = p(xr1 , ..., xrn).
Then

M(p) = lim
q(r)→∞

M(pr).
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In particular, in the case of a Laurent polynomial in two variables, we have

M(p(x, y)) = lim
n→∞

M(p(x, xn)).

This result expands Lehmer’s problem to multivariate polynomials. If there exists a monic polynomial p(x, y),
with integer coefficients, such that M(p(x, y)) < λ, then for some n, M(p(x, xn)) < λ.
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2 Convex Lattice Polygons
A convex lattice polygon is the convex hull of a finite number of points in the integer lattice Z2.
the acronym CLP will be used for convex lattice polygon. One can place a natural equivalence relation on
the set of CLPs. A result of P.R. Scott implies there are finitely many equivalence classes for a fixed number
of interior lattice points. In this section, we classify all equivalence classes of convex lattice triangles with one
interior lattice point. The proofs used here appear in a paper of Rabinowitz [8] where all CLPs with a single
interior point are characterised. Throughout this section P will denote a convex lattice polygon. A(P), b(P)
and i(P) will denote the area, number of boundary lattice points and number of interior lattice points of P,
respectively. Given a line segment AB with integer endpoints, the lattice length of AB is one less than the
number of integer points on AB.

2.1 Pick’s Formula and Scott’s Upper Bound on Boundary Points
Definition 2.1. Two convex lattice polygons P and Q are said to be lattice equivalent if there exists M ∈
SL2(Z) and v ∈ Z2 such that

P = M(Q)− v.

Mappings of the form x 7→Mx− v are known as an affine unimodular transformations.
One observes that the quantities A, b and i are invariant under equivalence.
In our study of CLPs, it will be useful map line segments onto the x-axis. The following lemma shows this
can always be achieved in an affine unimodular fashion.

Lemma 2.1. Let A and B be lattice points such that the line segment AB has lattice length p. There exists
an affine unimodular transformation which sends A to (0, 0) and B to (p, 0).

Proof. We first translate A to the origin. Let (x, y) be the image of B under this translation. We observe
that the lattice length p is given by

p = gcd(x, y).
We require integers a, b, c and d which satisfy ad− bc = ±1 and(

a b
c d

)(
x
y

)
=
(
p
0

)
.

Let c = −y
gcd(x,y) and let d = x

gcd(x,y) . We have cx + dy = 0, as required. Using the Euclidean algorithm, we
can choose a and b so that

ax+ by = gcd(x, y) = p.

Then we have
ad− bc = a

(
x

p

)
− b

(
−y
p

)
= 1
p

(ax+ by)

= 1

Definition 2.2. A shear of weight k about the x-axis is a transformation of the form(
1 k
0 1

)
,

k ∈ Z.

A shear of weight k about the x-axis sends the point (x, y) to (x + ky, y). We observe that points on the
x-axis are fixed by such a transformation. We also note that any shear about the x-axis has unit determinant
and thus constitutes an affine unimodular transformation.
In 1899 Pick established a formula for the area of a lattice polygon, which need not be convex, that depends
only on the number of boundary and interior lattice points.
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Theorem 2.2 (Pick).
A(P) = i(P) + 1

2b(P)− 1

As we will see, this is a useful tool when arguing about CLPs. Unfortunately the formula does not generalize
to higher dimensional polytopes.
In 1976 Scott proved the following, appealing to Pick’s formula:

Theorem 2.3 (Scott).
b(P) ≤ 2i(P) + 7

Proof. Our task is to demonstrate the inequality

f(P) := b(P)− 2i(P) ≤ 7.

Pick’s formula gives the following equivalent definitions of f :

f(P) = b(P)−A(P)− 1,

f(P) = A(P)− 2i(P) + 1.

We say y = cx+ d is a supporting line of P if for all (i, j) ∈ P, i ≤ aj + b or for all (i, j) ∈ P, i ≥ aj + b. We
can assume that P lies in the non-negative quadrant and meets supporting lines y = 0 and y = l for some
l ∈ N. Suppose P meets y = l in a segment of length h and meets y = 0 in a segment of length k.
By the convexity of P, each horizontal line between y = 0 and y = l can meet P in at most 2 points and so
we obtain

b(P) ≤ h+ k + 2l.

l must be at least 2 for otherwise P would have no interior point.
Consider the case l = 2, h + k ≥ 4 or l = h + k = 3. Again appealing to the convexity of P, we see that P
must contain a trapezium with bases of length h and k and height l.
Then

A(P) ≥ 1
2 l(h+ k)

whence
f(P) = 2b(P)− 2A(P)− 2

≤ 2(h+ k + 2l)− l(h+ k)− 2
= (h+ k − 4)(2− l) + 6
≤ 7.

We now consider the case l = 3, h+ k ≤ 2.
We have

b(P) ≤ h+ k + 2l ≤ 8.

Then since P has at least one interior point,

f(P) = b(P)− 2i(P) ≤ 6.

The final case where l ≥ 4 and h+ k ≤ 3 relies on a technical lemma not proven here. For details, we direct
the reader to [6]

2.2 Polygons with No Interior Lattice Points
Definition 2.3. T hp will be used to denote the triage with vertices (0, 0), (p, 0) and (0, h). Qhp,q will be used
to denote the quadrilateral with vertices (0, 0), (p, 0), (0, h) and (q, h).

We first classify convex lattice triangles with no interior lattice points.

Theorem 2.4. Let P be a convex lattice triangle with i(P) = 0. Then P is lattice equivalent to either T 2
2

or T 1
p , for some positive integer p.
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Proof. We label the vertices of P, A, B and C. We assume AC is the side with greatest lattice length.
Transform P so that A is mapped to (0, 0), C is mapped to (p, 0), and B is mapped to a point above the
x-axis. This is possible by Lemma 2.1. Let h be the height of B above the x-axis. If h = 1, B is of the form
(k, 1). We can apply a shear of weight −k about the x-axis. This map fixes A and C and sends B to the
(0, 1). This shows P is equivalent to T 1

p .
Then we assume h ≥ 1.
Let r be the length of the line segment obtained by intersecting the line y = 1 with P and let D and E be
the endpoints of this line segment. Then ABC and DBE are similar triangles and so we obtain

r

h− 1 = p

h

which gives
r = p(h− 1)

h
.

We observe that r cannot be greater than 1 since then P would contain an interior lattice point and so we
obtain

p(h− 1)
h

≤ 1.

One way this inequality can be satisfied is if p = 1 in which case P would be equivalent to T 1
1 . Then we

must have p ≥ 2.
Rearranging the above inequality we have

h

h− 1 ≥ p ⇐⇒ 1 + 1
h− 1 ≥ p

⇐⇒ 1
h− 1 ≥ p− 1

⇐⇒ h ≤ 1 + 1
p− 1

We already know h must be at least 2 and this last inequality shows that it can be at most 2. Hence h = 2
which forces p = 2. Since EF has lattice length 1 and contains no lattice points in it’s interior, E must be a
lattice point. Since p = 2, the only possibilities for E are (0, 1) and (1, 1). In the former case P is precisely
T 2

2 . If E = (1, 1), we apply a shear of weight −1 about the x-axis which transforms P into T 2
2 .

We now demonstrate that any convex lattice quadrilateral with no two sides parallel must contain and interior
lattice point.

Theorem 2.5. Let P be a convex lattice quadrilateral with no two sides parallel. Then i(P) ≥ 1.

Proof. Let P be a convex lattice quadrilateral with vertices A, B, C and D. Suppose that i(P) = 0 no two
sides of P are parallel and i(P) = 0. Then the diagonal AC has lattice length 1 and so the triangle ABC is
equivalent to T 1

p for some integer p ≥ 1 by Theorem 2.4.
We transform P so that A lies at (0, 0), C lies at (1, 0) and B lies at (0, p). The situation is shown in Figure
1.

D cannot lie to the left of the line x = 0 since P would fail to be convex. D cannot lie on the line x = 0
since P would reduce to a triangle. D cannot lie on the line x = 1 since the segments AB and CD would be
parallel. Finally, D cannot lie on or above the line y = p(1− x) since P would reduce to a triangle or fail to
be convex.
We consider the cases p = 1 and p ≥ 2 separately.
Suppose p = 1. D cannot lie below the line y = −x since (1,−1) would be an interior point. However, D
must lie below y = 1 − x, as argued above. Then D can only lie on the line y = −x which results in the
segments BC and AD being parallel.
Then suppose p ≥ 2. If AD passes through or above the point (1,−1) then AD will meet the line x = 2
in the half plane y ≥ −2. On the other hand, y = p(1 − x) meets the line x = 2 in the half plane y ≤ −2.
That is, the only way AD can pass through or above (1,−1)is if D lies on or above y = p(1 − x) which is
impossible. Then (1,−1) lies above AD and so (1,−1) is in the interior of P, a contradiction.
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Figure 1

We are now in a position to classify all convex lattice quadrilaterals with no interior lattice points.

Theorem 2.6. Let P = ABCD be a convex lattice quadrilateral with i(P ) = 0. Then Pis equivalent to Q1
p,q

for some positive integers p ≥ q ≥ 1.

Proof. By Theorem 2.5, a pair of edges of P must be parallel. We assume W.L.O.G that AB is parallel to
CD. We assume further that AB has lattice length p ≥ 1, CD has lattice length q ≥ 1 and p ≥ q. Let h be
the height of CD above the x-axis.
The segment BC must have lattice length one since P has no interior points. Then the triangle ABC must
be equivalent to T 1

p by Theorem 2.4.
The area of ABC is clearly

A(P) = ph

2 .

On the other hand, by Pick’s formula we find

A(P) = p+ 2
2 − 1 = p

2

and so we deduce that h = 1. Applying a shear about the x-axis to map C onto the y-axis, we see that P is
equivalent to Q1

p,q as required.

The classification of convex lattice polygons with i(P) = 0 ends here for, as we now demonstrate, any convex
lattice pentagon must contain an interior lattice point.

Theorem 2.7. Let P be a convex lattice pentagon. Then i(P) ≥ 1.

Proof. Suppose P = ABCDE is a convex lattice pentagon with i(P) = 0. Then the quadrilateral ABCD
contains no lattice points in it’s interior and is therefore equivalent toQ1

p,q for some positive integers p ≥ q ≥ 1.
We assume W.L.O.G that AB is parallel to CD where AB has lattice length p and CD has lattice length q.
We can also assume that A = (0, 0), B = (0, p), C = (1, q) and D = (1, 0). The situation is shown in Figure
2. E cannot lie to the left of the line x = 0 or to the right of the line x = 1 since P would fail to be convex.
Then E must lie on x = 0 or x = −1 which is a contradiction since P then reduces to a quadrilateral.
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Figure 2

2.3 Triangles with One Interior Lattice Point
We first list all distinct equivalence classes of convex lattice triangles with a single interior point.

Theorem 2.8. Let P = ABC be a convex lattice triangle with i(P) = 1. Then P is equivalent to one of the
five triangles depicted in Figure 3.

Proof. We assume W.L.O.G that AB is the side with greatest lattice length p and that A lies at the origin
and B at (p, 0). We also assume C lies above the x-axis. Let h be the height of C above the x-axis. By
Pick’s formula we have

A(P) = i(P) + b(P)
2 − 1

= b(P)
2

On the other hand, the area is clearly ph
2 and so we have ph = b(P).

By assumption, p is the greatest lattice length of any side of P and so b(P) ≤ 3p.
Then

ph ≤ 3p

whence
h ≤ 3.

If h = 1, P would contain no interior lattice points and so we need only consider the cases h = 2 and h = 3.
As in the proof of Theorem 2.4, let r be the length of the line segment obtained by intersecting the line y = 1
with P. We must have r ≤ 2 or P would have more than one interior point.
By similar triangles we have

r

h− 1 = p

h
.

Making use of the bounds r ≤ 2 and 2 ≤ h ≤ 3 we have

p = hr

h− 1 ≤
2h
h− 1 ≤ 4.

Case 1: h = 2.
We have p = 2r ≤ 4 and so p = 1, 2, 3 or 4. Then point C lies on the line y = 2. We can assume that
C = (1, 2) or C = (0, 2), for if not, we can apply a shear about the x-axis.

Case 1a: h = 2, p = 4.
Choosing C = (0, 2) yields precisely polygon (a) in Figure 3. C cannot be the point (1, 2) for the resulting
polygon has two interior points.
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(a) (b) (c)

(d) (e)
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M3N3O3

Q3

U3

Figure 3: A complete list of inequivalent convex lattice triangles with a single interior point.
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Case 1b: h = 2, p = 3. If we choose C = (0, 2), we obtain polygon (b) in Figure 3. Setting C = (1, 2)
yields another triangle with a single interior point but this is also equivalent to polygon (b) if we apply the
transformation (

−1 −1
0 1

)
after first translating the polygons so that the interior point lies at the origin.
Case 1c: h = 2, p = 2.
If C = (0, 2), we obtain the triangle T 2

2 which has no interior lattice points. Choosing C = (1, 2) yields
precisely polygon (c) in Figure 3.

Case 1d: h = 2, p = 1. Both possibilities for C yield triangles with no interior lattice points.

Case 2: h = 3. We have p = 3r/2 ≤ 3 and so p = 1, 2 or 3. C lie on the line y = 3. We can assume
C lies at (0, 3), (1, 3) or (2, 3), for if not, we can apply an appropriate shear about the x-axis.

Case 2a: h = 3, p = 3. Both choices C = (1, 3) and C = (2, 3) yield triangles with more than one in-
terior point. Setting C = (0, 3) yields precisely polygon (d) in Figure 3.

Case 2b: h = 3, p = 2.
The triangle obtained by setting C = (1, 3) contains two interior lattice points. The choice C = (0, 3) yields
precisely polygon (b) in Figure 3. The triangle obtained by setting C = (2, 3) is also equivalent to polygon
(b) via a shear of weight one about the x-axis.

Case 2c: h = 3, p = 1.
Setting C = (0, 3) or C = (1, 3) results in triangles with no interior points. The choice C = (2, 3) yields a
triangle equivalent to polygon (e). This can be seen by applying the transformation(

−1 1
1 0

)
after first translating both polygons so the interior point lies at the origin.

Continuing along these lines of argument one can indeed characterise all CLPs with a single interior lattice
point. [8]
There are sixteen unique representatives and we show them below in Figure 4.
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Figure 4

3 The Newton Polygon and Reciprocal Polynomials
3.1 The Newton Polytope
Throughout the following ’polynomial’ will be understood to mean Laurent polynomial, unless otherwise
indicated. A convex lattice polytope is the convex hull of finitely many points in the integer lattice Zn.
Associated to each polynomial is a certain convex lattice polytope.

Definition 3.1. The Newton polytope of p(x, y) =
∑
v∈Zn a(v)zv1

1 ...zvnn , a(v) ∈ C, is defined as

Np := convex.hull{v : a(v) 6= 0}.

A lattice point v ∈ Np is labelled with the coefficient a(v) (which may be 0). When n = 2, Np is called the
Newton Polygon of p.

Recall that a hyperplane in Rn is a set of the form

H = {v ∈ Rn : 〈w, v〉 = d}

for some d ∈ R and some normal vector w ∈ Rn. H = {v ∈ Rn : 〈w, v〉 = d} is said to be a supporting
hyperplane of the polytope K if either 〈x,w〉 ≥ d or 〈x,w〉 ≤ d for all x ∈ K. Finally, F ⊂ K is a face of the
polytope K if K has a supporting hyperplane containing F .

Definition 3.2. Let F be a face of Np. The face polynomial of L is defined as

qF (z1, ..., zn) =
∑
v∈F

a(v)zv1
1 ...zvnn

where a(v) is the label of v in Np.

Let V be an n× n matrix with integer entries and detV = ±1. Then the change of variables

(z1, ..., zn) 7→ (z1, ..., zn)V (1)

fixes the torus Tn and as a result, it has no affect on the integral defining the Mahler measure. This motivates
the following definition.

Definition 3.3. Two polynomials related by a changes of variables as described above and multiplication by
a monomial are said to be equivalent.
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If we identify that the exponents of an n-variable polynomial lie in some hyperplane or lower dimensional
affine subspace, we will be able to reduce to a polynomial in fewer variables and thereby simplify the Mahler
measure integral.

Example 3.1. Suppose we wish to compute the Mahler measure of the polynomial

f(x, y) = 1 + x2y + x4y2.

Applying the change of variables (x, y) 7→ (xy−1, x−1y2), which is of the form (1), we obtain

f∗(x, y) = 1 + x+ x2

which we recognise as cyclotomic and so we can deduce that

M(f) = M(f∗) = 1.

From this we see that every polynomial in two variables has as its face polynomials, single variable polynomials
and so we can make the following equivalent definition.

Definition 3.4. Let F be a face of the Newton polygon of p(x, y) and let l0, ..., lk be all lattice points on F ,
listed in counter-clockwise orientation. The face polynomial of F is defined as

qF (z) =
k∑
j=0

cjz
j

where cj is the label of lj in Np.

Example 3.2. The Newton Polygon of the polynomial f(x, y) = 1 + x+ y is shown in Figure 5.
It’s face polynomials are

q1(z) = q2(z) = q3(z) = 1 + z.
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Figure 5

As shown by the following result of Smyth and Boyd, which is the basis of our interest in the Newton
polytope, the Mahler measure of a polynomial is bounded below by the greatest of the Mahler measures of
it’s face polynomials. The proof presented here appears in [3].

Theorem 3.1 (Smyth, Boyd). Let p(z1, ..., zn) =
∑
v∈Zn a(v)zv1

1 ...zvnn and let F be a face of Np. Then

M(p) ≥M(qF ).

Proof. We argue under the assumption that F has codimension 1. The general case then follows by induction.
Since F is a face, it is contained in some supporting hyperplane H = {x ∈ Zn : 〈x, b〉 = d}. We can choose
the normal vector b = (b11, b21..., bn1) to have coprime integer entries. By a classical result of number theory,
we can find an integer n× n matrix B with first column bT and determinant 1. We define new variables wj
by

(z1, .., zn) = (w1, ..., wn)B

and set
r(w1, ..., wn) = p(z1, .., zn).
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Since each monomial in p is of the form
n∏
i=1

zjii =
n∏
k=1

w

∑n

i=1
jibik

k

we have
r(w1, ..., wn) =

∑
v∈NpB

a(vB−1)wv1
1 ...w

vn
n .

The set FB is contained in the hyperplane HB = {x ∈ Zn : x1 = d}. We write r(w1, ..., wn) as a sum of
terms of the form rj(w2, ..., wn)wj1 where rj is a Laurent polynomial in w2, ..., wn. Since HB is a supporting
hyperplane, we can assume W.L.O.G that the greatest value of the index j is d, replacing w1 by w−1

1 and
multiplying through by a power of w1 if needed. Let L be the minimum value of j.
Then

r(w1, ..., wn) = wL1 (rdwd−L1 + rd−L−1 + ...+ rL)
= wL1 rd(wd−L1 + (rd−1/rd) + ...+ (rL/rd))
= wL1 rdR

where R is a rational function in w1, ..., wn.
Now

m(p) = m(r) = m(rd) +m(R).

rd is precisely the image of qF under the change of variables defined above and so m(rd) = m(qF ).
Now consider the quantity

m(R) =
∫ 1

0
...

∫ 1

0
log |R(e2πiθ1 , e2πiθ2 ..., e2πiθn)|dθ1...dθn.

For any fixed values of (w2, ..., wn), R(w1, w2, ..., wn) is a polynomial in w1. It then follows from Jensen’s
formula that ∫ 1

0
log |R(e2πiθ1 , e2πiθ2 ..., e2πiθn)|dθ1 ≥ 0

for any fixed values of (θ2, ..., θn). This shows that m(R) ≥ 0.
We can then conclude that

m(p) ≥ m(qF )

and taking exponentials we obtain the statement of the theorem.

From this result we see that to optimise the lower bound from the face polynomials, we should restrict our
attention to polynomials whose face polynomials all have exponential Mahler measure 1.

3.2 Classification of Tempered Reciprocal Families
In this section ’polynomial’ refers to a Laurent polynomial in two variables.

Definition 3.5. A polynomial is said to be tempered if all of its face polynomials have exponential Mahler
measure 1.

We define the genus of a polynomial to be the number of lattice points in the interior of its Newton polygon.
This number is related to the genus of the algebraic variety defined by the zero locus of the polynomial, but
as we shall not discuss varieties, we make this distinct definition.
We say two polynomials are birationally equivalent if there exist an invertible map (x, y) 7→ (F (X,Y ), G(X,Y )),
F and G rational functions over C, under which one is the image of the other up to a factor of exponential
Mahler measure 1.
A polynomial is said to be reciprocal if

p(x, y) = xnymp(x−1, y−1)

for some n,m ∈ Z. Reciprocal polynomials can also be characterised as those whose Newton polygon is
invariant under a 180 degree rotation followed by a translation by some (n,m) ∈ Z2. Of particular interest
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to us are polynomials which are tempered and reciprocal.
If we restrict our attention to polynomials of genus 1, we can classify the tempered reciprocal polynomials
up to equivalence. Equivalence of polynomials corresponds to unimodular affine equivalence of Newton poly-
gons, as defined in the last chapter.

Only three of the 16 polygons shown at the end of the previous chapter have 180 degree rotational symmetry
and are therefore the only polygons which can corresponding to a reciprocal polynomial.

Figure 6

We can determine all tempered reciprocal families, up to a constant factor, by assigning coefficients to the
lattice points in these polygons. The coefficient of the interior point, which we take to be the origin, is
unrestricted. In two of these polygons, all face polynomials have degree 1 and so the coefficients must be
±1 to ensure that the polygon is tempered. In the third polygon, the face polynomials have degree 2. The
face polynomials are of the form a + bz + cz2 and we can assume a and c are 1 or −1. If a = c, b is free to
take any value from the set {0,±1,±2}. If a 6= c, the polynomial will fail to be cyclotomic unless b = 0. To
ensure reciprocity, we also require that each point has the same coefficient as its image under a 180 degree
rotation. We summarise this classification in the following theorem.

Theorem 3.2. An integer coefficient, tempered, reciprocal polynomial of genus 1 is equivalent to one of the
following:

αx+ βy + α

x
+ β

y
+ k

αx+ βy + δy

x
+ α

x
+ β

y
+ δx

y
+ k

αxy + βy

x
+ ηy + ζx+ α

xy
+ βx

y
+ η

y
+ ζ

x
+ k

where α, β, δ ∈ {1,−1}, η, ζ ∈
{
{0}, α 6= β

{0,±1,±2}, α = β
, k ∈ Z.

3.3 Birational Maps
Birational maps which preserve the temperedness property are expected to preserve the Mahler measure,
at least for sufficiently large values of the internal parameter k. In light of Smyth’s result, non reciprocal
polynomials are not likely to yield single variable polynomials of small Mahler measure. Then by demon-
strating that all tempered, reciprocal polynomials in two variables can be birationally mapped to tempered
non reciprocal polynomials, one adds weight to the hypothesis that Lehmer’s problem is unsolvable
M.J. Bertin gives the following example. [9]
The image of the polynomial p(x, y) = y2 + y(x2 + kx + 1) + x2 under the transformation (x, y) 7→(

Y
X−1 ,

kY−(X−1)2

(X−1)2

)
is

−kY
(X − 1)4 (X3 − kXY − 2X2 − Y 2 +X).
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y2 +y(x2 +kx+1)+x2 is equivalent to x+y+ 1
x + 1

y +k and it is easy to verify that X3−kXY −2X2−Y 2 +X
is tempered and non-reciprocal.
Its Newton polygon is shown below:
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1

Figure 7

The face polynomials of the three faces are

q1(z) = 1− 2z + z2 = (z − 1)2,

q2(z) = 1 + z,

q3(z) = 1 + z.

All three of the face polynomials are cyclotomic and the polygon has no 180 degree rotational symmetry.
An important feature of this transformation is that it is invertible and so it definies a birational equivalence.
This is why the genus is preserved. We give an example of a transformation which preserves temperedness,
breaks reciprocity and does not preserve genus for genus 1 polynomials although this is not expected to affect
the Mahler measure for large values of the parameter k.

Before giving the transformation, we outline the intuition which led to its discovery.
Suppose we wish to determine a change of variables which preserves temperedness but breaks the reciprocity
of the polynomial x+ y + 1

x + 1
y + k.

For simplicity, let us consider transformations of the form

(x, y) 7→ (P,Q)

where P and Q are polynomials in X and Y .
Making the substitution and factoring out 1

P and 1
Q , we obtain

1
PQ

(P 2Q+Q2P + P +Q+ kPQ).

If the transformation is to satisfy our requirements in this form, P and Q should have Mahler measure 1.
To break reciprocity, it seems that it should be enough to choose P and Q so they are not symmetric in X
and Y . Since k is arbitrary, we can only have a tempered polynomial if all terms with a coefficient depending
on k correspond to a point in the interior of the Newton polygon. This seems likely to be the case if the
exponents of the terms in PQ are approximately the average of the exponents of all terms in the polynomial.
If we choose P to be of positive degree and Q of negative degree, the degree of kPQ should be between that
of P 2Q and Q2P .
With these requirements in mind, we try the transformation

(x, y) 7→ (X2Y + Y,X−1Y −1).

In this case, 1
PQ = X

(X2+1) and M
(

X
(X2+1)

)
= 1.

As we will see in the proof of the following theorem, this transformation has the desired properties when
applied to any tempered reciprocal genus 1 polynomial.
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Theorem 3.3. Given a tempered, reciprocal polynomial of genus 1, one can obtain a tempered non reciprocal
polynomial via a birational change of variables.

Proof. Throughout the following proof, the coefficients α, β, δ, η, ζ are as defined in Theorem 3.2.

The image of the polynomial p1(x, y) = αx+ βy + α 1
x + β 1

y + k under the transformation
(x, y) 7→ ((X2 + 1)Y,X−1Y −1) is

X

(X2 + 1)(βX2Y + αY X3 + βY + αY X−1 + 2αXY + k(X +X−1) + βY −1 + βX−2Y −1 + αX−1Y −1).

Shown below in Figure 8 is the Newton polygon of the polynomial

P1(X,Y ) = βX2Y + αY X3 + βY + αY X−1 + 2αXY + k(X +X−1) + βY −1 + βX−2Y −1 + αX−1Y −1.

β
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β

β 2α β

α

kk 0

Figure 8

The face polynomials of the four faces are

q1(z) = α+ βz + 2αz2 + βz3 + αz4,

q2(z) = α+ βz,

q3(z) = β + αz + βz2,

q4(z) = β + αz.

We see that all face polynomials are cyclotomic for all legal choices of coefficients so the polynomial corre-
sponding to this Newton polygon is tempered.
P1(X,Y ) is not reciprocal. To see this, observe that if we rotate its Newton polygon by 180 degrees, we
cannot recover the original polygon by a translation.

We now consider the image of p2(x, y) = αx + βy + α 1
x + β 1

y + δ xy + δ yx + k under (x, y) 7→ ((X2 +
1)Y,X−1Y −1).
We obtain

X

(X2 + 1)(βX2Y + αY X3 + βY + αY X−1 + 2αXY + k(X +X−1) + βY −1+

βX−2Y −1 + αX−1Y −1 + δX−2Y −2 + δY 2X4 + 2δX2Y 2 + δY 2).
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Below in Figure 9 is the Newton polygon of the polynomial

P2(X,Y ) = βX2Y + αY X3 + βY + αY X−1 + 2αXY + k(X +X−1)+
βY −1 + βX−2Y −1 + αX−1Y −1 + δX−2Y −2 + δY 2X4 + 2δX2Y 2 + δY 2.
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Figure 9

The face polynomials are listed below

q1(z) = δ + δz2 + δz4,

q2(z) = δ + αz,

q3(z) = α+ βz,

q4(z) = β + δz,

q5(z) = δ + βz,

q6(z) = β + αz,

q7(z) = α+ δz.

Again, all of these polynomials are cyclotomic for all legal coefficients, and so P2(X,Y ) is tempered. By the
same argument used in the previous case, P2(X,Y ) is not reciprocal.
Now we consider the image of p3(x, y) = αxy + βy

x + ηy + ζx + α
xy + βx

y + η
y + ζ

x + k under (x, y) 7→
((X2 + 1)Y,X−1Y −1).
We have

X

(X2 + 1)(αX2 + αX−2 + βX−2Y −2 + βX4Y 2 + 2βX2Y 2 + βY 2+

ηY −1 + ηX−2Y −1 + ζX3Y + 2ζXY + ζX−1Y + ηX2Y + ηY ζX−1Y −1 + k(X +X−1) + 3α).

Below in Figure 10 is the Newton polygon of

P3(X,Y ) = αX2 + αX−2 + βX−2Y −2 + βX4Y 2 + 2βX2Y 2 + βY 2+
ηY −1 + ηX−2Y −1 + ζX3Y + 2ζXY + ζX−1Y + ηX2Y + ηY ζX−1Y −1 + k(X +X−1) + 3α.
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The face polynomials are listed below

q1(z) = β + 2βz2 + βz4,

q2(z) = β + ζz + αz2,

q3(z) = α+ ηz + βz2,

q4(z) = β + ηz + αz2,

q5(z) = α+ ζz + βz2.

Once again, all face polynomials are cyclotomic for all legal coefficients and by inspection of the Newton
Polygon, we see that P3(X,Y ) is not reciprocal.



4 REFERENCES 23

4 References
[1] P.A. Damianou, Monic Polynomials in Z[X] with Roots in the Unit Disc

http://www.mas.ucy.ac.cy/ damianou/kronecker.pdf

[2] C.J. Smyth, On the product of conjugates outside the unit circle of an algebraic integer Bulletin
of the London Mathematical Society 07/1971; 169-175

[3] C.J. Smyth, A Kronecker-Type Theorem for Complex Polynomials in Several Variables Canad.
Math. Bull. Vol. 24, 1981, 447-452

[4] G. Pólya and G. Szego Problems and Theorems in Analysis Part I: Series, Integral Calculus,
Theory of Functions

[5] W. Lawton A Problem of Boyd Concerning Geometric Means of Polynomials Journal of Number
Theory 16, 1983, 356-362

[6] P.R Scott, On Convex Lattice Polygons Bulletin of the Australian Mathematical Society, Vol.
15, 1976, 395-399.

[7] R. Breusch, On the distribution of the roots of a polynomial with integral coefficients Proc.
Amer. Math. Soc. 2, 1951, 939–941

[8] S. Rabinowitz A Census of Convex Lattice Polygons with at most one Interior Lattice Point
Ars Combin, 28, 1989, 83–96

[9] M.J. Bertin, Mesure de Mahler et régulateur elliptique : preuve de deux relations exotiques, in
Number theory, CRM Proc. Lecture Notes 36 (Amer. Math. Soc., Providence, RI, 2004), 1–12.


